
Flüssigkeitsverschluß KITO FL/IN-...-IIB3

(mit Leerhebesicherung)

DN	ANSI	D	Н	V max [m³/h]	kg*
25	1"	140	552	30	15
32	1 1/4"	140	552	30	16
40	1 1/2"	219	652	120	40
50	2"	219	652	120	41
65	2 1/2"	273	854	240	77
80	3"	273	854	270	81
100	4"	354	1057	480	131
125	5"	457	1254	720	287

Maßangaben in mm

* Gewichtsangaben gelten nur für die Standard-Ausführung

Baumusterprüfung nach ATEX 100 a und EN 12874

C € -Kennzeichnung vorhanden

Bestellbeispiel : KITO FL/IN-65-IIB3

Änderungen vorbehalten

Standard-Ausführung

Gehäuse : <u>Stahl,</u> Edelstahl 1.4571 Auslauf : schräg angeschnitten

KITO-Sicherung : 3-fach, gerade (austauschbar) bis DN 65 Spaltweite 0,7 mm,

ab DN 80 Spaltweite 0,7 mm

Rostkäfig : Edelstahl 1.4571 Rostband : Edelstahl 1.4310, 1.4571

Flanschanschluß : DIN 2501 PN 10 ANSI 150 lbs. RF

Weitere Werkstoffe, Sonderausführungen usw. auf Anfrage!

Verwendung

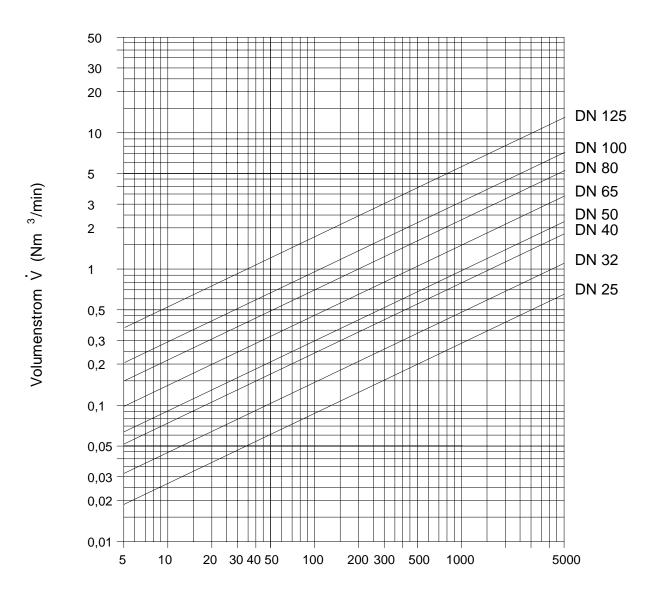
Endarmatur, detonations- und flammendurchschlagsicher, zum Anbau an das Rohrende von Füll- und Entleerungsleitungen innerhalb von Tanks zur Lagerung brennbarer Flüssigkeiten der Explosionsgruppe IIB3 mit einer Normspaltweite (NSW) $\geq 0,65$ mm. Mit einer als Flammensperre ausgebildeten Leerhebesicherung zur Verhinderung des Absaugens von Sperrflüssigkeit. Die Durchflußrichtung ist beliebig. Besonders geeignet für liegende und unterirdische Behälter. Einbaulage lotrecht.

Es dürfen nur Rohrleitungen ≤ der Flansch-Nennweite angeschlossen werden. Der Gehäusekörper muß ständig mit der Lagerflüssigkeit gefüllt sein.

Ausgestattet mit einer Verschlußschraube zum Ablassen der Flüssigkeit.

Die in obiger Tabelle aufgeführten Saugleistungen V max dürfen nicht überschritten werden.

Leistungsdiagramm: G 0.14N



Der Volumenstrom V in Nm³/min ist ermittelt mit Wasser gemäß DIN EN 60534 bei einer Temperatur von $T_n = 15^{\circ}$ C und einem Druck $p_n = 1013$ mbar.

Für Medien anderer Dichte kann der Flüssigkeitsstrom ausreichend genau mit einer einfachen Näherungsgleichung bestimmt werden:

$$\dot{V}_{\text{Flüssigkeit}} \cong \dot{V}_{\text{Wasser}} \cdot \sqrt{\frac{
ho_{\text{Wasser}}}{
ho_{\text{Flüssigkeit}}}}$$

Druckverlust \triangle p (mbar)

Änderungen vorbehalten